Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Slippery sequence

A slippery sequence is a small section of codon nucleotide sequences (usually UUUAAAC) that controls the rate and chance of ribosomal frameshifting. A slippery sequence causes a faster ribosomal transfer which in turn can cause the reading ribosome to "slip." This allows a tRNA to shift by 1 base (−1) after it has paired with its anticodon, changing the reading frame. A −1 frameshift triggered by such a sequence is a programmed −1 ribosomal frameshift. It is followed by a spacer region, and an RNA secondary structure. Such sequences are common in virus polyproteins.

The frameshift occurs due to wobble pairing. The Gibbs free energy of secondary structures downstream give a hint at how often frameshift happens. Tension on the mRNA molecule also plays a role. A list of slippery sequences found in animal viruses is available from Huang et al.

Slippery sequences that cause a 2-base slip (−2 frameshift) have been constructed out of the HIV UUUUUUA sequence.

Related Image Collections Add Image
We don't have any YouTube videos related to Slippery sequence yet.
We don't have any PDF documents related to Slippery sequence yet.
We don't have any Books related to Slippery sequence yet.
We don't have any archived web articles related to Slippery sequence yet.

See also

References

  1. Green L, Kim CH, Bustamante C, Tinoco I (January 2008). "Characterization of the mechanical unfolding of RNA pseudoknots". Journal of Molecular Biology. 375 (2): 511–28. doi:10.1016/j.jmb.2007.05.058. PMC 7094456. PMID 18021801. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7094456

  2. Yu CH, Noteborn MH, Olsthoorn RC (December 2010). "Stimulation of ribosomal frameshifting by antisense LNA". Nucleic Acids Research. 38 (22): 8277–83. doi:10.1093/nar/gkq650. PMC 3001050. PMID 20693527. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3001050

  3. "Dr Ian Brierley Research description". Department of Pathology, University of Cambridge. Archived from the original on 2013-10-02. Retrieved 2013-07-28. https://web.archive.org/web/20131002121121/http://www.path.cam.ac.uk/research/investigators/brierley/research.html

  4. "Molecular Biology: Frameshifting occurs at slippery sequences". Molecularstudy.blogspot.com. 2012-10-16. Retrieved 2013-07-28. http://molecularstudy.blogspot.com/2012/10/frameshifting-occurs-at-slippery.html

  5. Farabaugh PJ, Björk GR (March 1999). "How translational accuracy influences reading frame maintenance". The EMBO Journal. 18 (6): 1427–34. doi:10.1093/emboj/18.6.1427. PMC 1171232. PMID 10075915. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1171232

  6. Jacks T, Madhani HD, Masiarz FR, Varmus HE (November 1988). "Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region". Cell. 55 (3): 447–58. doi:10.1016/0092-8674(88)90031-1. PMC 7133365. PMID 2846182. S2CID 25672863. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7133365

  7. Cao S, Chen SJ (March 2008). "Predicting ribosomal frameshifting efficiency". Physical Biology. 5 (1): 016002. Bibcode:2008PhBio...5a6002C. doi:10.1088/1478-3975/5/1/016002. PMC 2442619. PMID 18367782. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2442619

  8. Lin Z, Gilbert RJ, Brierley I (September 2012). "Spacer-length dependence of programmed -1 or -2 ribosomal frameshifting on a U6A heptamer supports a role for messenger RNA (mRNA) tension in frameshifting". Nucleic Acids Research. 40 (17): 8674–89. doi:10.1093/nar/gks629. PMC 3458567. PMID 22743270. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3458567

  9. Huang X, Cheng Q, Du Z (2013). "A genome-wide analysis of RNA pseudoknots that stimulate efficient -1 ribosomal frameshifting or readthrough in animal viruses". BioMed Research International. 2013: 984028. doi:10.1155/2013/984028. PMC 3835772. PMID 24298557. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3835772

  10. Lin Z, Gilbert RJ, Brierley I (September 2012). "Spacer-length dependence of programmed -1 or -2 ribosomal frameshifting on a U6A heptamer supports a role for messenger RNA (mRNA) tension in frameshifting". Nucleic Acids Research. 40 (17): 8674–89. doi:10.1093/nar/gks629. PMC 3458567. PMID 22743270. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3458567